[image:]

Technical Architecture Document

Databricks Workspace Design Patterns

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Executive Summary
Effective workspace design is fundamental to successfully operating Databricks at enterprise scale. This comprehensive guide provides architects and platform teams with proven patterns for organizing workspaces, managing environments, structuring teams, and implementing governance across multiple Databricks deployments.
Workspace design decisions have long-lasting implications for security, cost management, team productivity, and operational efficiency. Poor workspace architecture can lead to security vulnerabilities, cost overruns, collaboration challenges, and governance gaps that become increasingly difficult to remediate as the platform grows.
This document presents battle-tested design patterns drawn from enterprise implementations, providing clear guidance on workspace topology, environment separation, folder organization, cluster management, job orchestration, CI/CD integration, and cost optimization strategies.
1. Introduction to Workspace Design
1.1 What is a Workspace?
A Databricks workspace is a logical environment for accessing Databricks assets. Each workspace provides:
Notebook Environment: Interactive development and collaboration
Compute Management: Clusters and SQL warehouses
Job Orchestration: Scheduled workflows and pipelines
Data Access: Tables, files, and external data sources
Security Boundary: Users, groups, and permissions
Workspace Components
┌───┐
│ DATABRICKS WORKSPACE │
├───┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Notebooks │ │ Repos │ │ Jobs │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Clusters │ │ SQL │ │ Delta │ │
│ │ │ │ Warehouses │ │ Live Tables│ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Models │ │ Feature │ │ Secrets │ │
│ │ (MLflow) │ │ Store │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├───┤
│ UNITY CATALOG │
│ (Shared across workspaces) │
└───┘
1.2 Design Considerations
When designing workspace architecture, consider:
	Factor
	Considerations

	Security
	Isolation requirements, compliance boundaries

	Collaboration
	Team structure, cross-team sharing needs

	Cost
	Chargeback models, budget separation

	Operations
	Deployment processes, monitoring scope

	Governance
	Data access policies, audit requirements

	Scale
	Growth projections, performance isolation

1.3 Design Principles
Core Principles
Separation of Concerns: Isolate environments and workloads appropriately
Least Privilege: Grant minimum necessary access
Automation First: Manage infrastructure as code
Cost Visibility: Enable accurate cost attribution
Scalability: Design for growth from day one
2. Workspace Topology Patterns
2.1 Single Workspace Pattern
Use Case: Small organizations, proof of concepts, single team deployments
┌───┐
│ Single Workspace │
│ │
│ ┌───────────┐ ┌───────────┐ │
│ │ Dev │ │ Prod │ │
│ │ Folder │ │ Folder │ │
│ └───────────┘ └───────────┘ │
│ │
│ All teams, all environments │
└───┘
Pros
Simple to manage
Lower operational overhead
Easy collaboration
Cons
Limited isolation
Difficult to scale
Security challenges
When to Use
Less than 20 users
Single team or project
Non-production or development only
2.2 Environment-Based Pattern
Use Case: Standard enterprise deployment with development, staging, and production separation
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ Development │ │ Staging │ │ Production │
│ Workspace │ │ Workspace │ │ Workspace │
├───────────────┤ ├───────────────┤ ├───────────────┤
│ • Exploration │ │ • Integration │ │ • Live data │
│ • Prototyping │ │ • Testing │ │ • Scheduled │
│ • All users │ │ • Limited │ │ • Restricted │
└───────────────┘ └───────────────┘ └───────────────┘
 │ │ │
 └──────────────────┴──────────────────┘
 │
 Unity Catalog
 (Shared Metastore)
Implementation
Terraform: Environment-based workspaces
locals {
 environments = ["development", "staging", "production"]
}

resource "databricks_workspace" "env" {
 for_each = toset(local.environments)

 name = "data-platform-${each.value}"
 region = var.region
 sku = each.value == "production" ? "premium" : "standard"

 custom_parameters {
 no_public_ip = each.value == "production"
 virtual_network_id = var.vnet_id
 public_subnet_name = "databricks-public-${each.value}"
 private_subnet_name = "databricks-private-${each.value}"
 }

 tags = {
 Environment = each.value
 ManagedBy = "terraform"
 }
}

Assign all workspaces to same metastore
resource "databricks_metastore_assignment" "env" {
 for_each = toset(local.environments)

 metastore_id = var.metastore_id
 workspace_id = databricks_workspace.env[each.value].workspace_id
 default_catalog_name = each.value == "production" ? "production" : "development"
}
Access Control by Environment
Development: All data engineers and scientists
Staging: CI/CD service principals + QA team
Production: Service principals only (no interactive access)

workspace_access = {
 "development": {
 "groups": ["data_engineers", "data_scientists", "data_analysts"],
 "interactive_access": True
 },
 "staging": {
 "groups": ["qa_team"],
 "service_principals": ["cicd_sp"],
 "interactive_access": True
 },
 "production": {
 "groups": [], # No direct user access
 "service_principals": ["production_etl_sp", "production_ml_sp"],
 "interactive_access": False
 }
}
2.3 Team-Based Pattern
Use Case: Large organizations with autonomous teams requiring isolation
┌───┐
│ DATABRICKS ACCOUNT │
├───┤
│ │
│ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │
│ │ Data Eng │ │ Data Science │ │ Analytics │ │
│ │ Workspace │ │ Workspace │ │ Workspace │ │
│ ├───────────────┤ ├───────────────┤ ├───────────────┤ │
│ │ ETL pipelines │ │ ML training │ │ BI dashboards │ │
│ │ Data quality │ │ Feature eng │ │ Ad-hoc SQL │ │
│ │ Data modeling │ │ Experiments │ │ Reports │ │
│ └───────────────┘ └───────────────┘ └───────────────┘ │
│ │ │ │ │
│ └──────────────────┴──────────────────┘ │
│ │ │
│ Unity Catalog │
│ (Cross-workspace data) │
└───┘
Data Sharing Across Teams
-- Unity Catalog enables cross-workspace data sharing
-- Data Engineering workspace creates data
CREATE TABLE production.curated.customer_features (
 customer_id STRING,
 feature_vector ARRAY<DOUBLE>,
 updated_at TIMESTAMP
);

-- Grant access to Data Science workspace
GRANT SELECT ON TABLE production.curated.customer_features
TO `data_science_team`;

-- Data Science can access from their workspace
-- (in Data Science workspace)
SELECT * FROM production.curated.customer_features;
2.4 Hybrid Pattern
Use Case: Enterprise deployments requiring both environment and team isolation
 ┌───┐
 │ PRODUCTION │
 │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
 │ │ Shared │ │ Team A │ │ Team B │ │
 │ │ Services│ │ Prod │ │ Prod │ │
 │ └─────────┘ └─────────┘ └─────────┘ │
 └───┘
 │
┌───┐
│ NON-PRODUCTION │
│ ┌─────────────────────┐ ┌─────────────────────┐ │
│ │ Team A │ │ Team B │ │
│ │ ┌─────┐ ┌─────┐ │ │ ┌─────┐ ┌─────┐ │ │
│ │ │ Dev │ │ QA │ │ │ │ Dev │ │ QA │ │ │
│ │ └─────┘ └─────┘ │ │ └─────┘ └─────┘ │ │
│ └─────────────────────┘ └─────────────────────┘ │
└───┘
 │
 Unity Catalog
Terraform Implementation
locals {
 teams = ["platform", "analytics", "ml"]
 environments = {
 nonprod = ["dev", "qa"]
 prod = ["prod"]
 }
}

Non-production workspaces per team
resource "databricks_workspace" "nonprod" {
 for_each = {
 for pair in setproduct(local.teams, local.environments.nonprod) :
 "${pair[0]}-${pair[1]}" => {
 team = pair[0]
 env = pair[1]
 }
 }

 name = "data-platform-${each.value.team}-${each.value.env}"
 region = var.region
 sku = "standard"
}

Production workspaces (more restricted)
resource "databricks_workspace" "prod" {
 for_each = toset(local.teams)

 name = "data-platform-${each.value}-prod"
 region = var.region
 sku = "premium"

 custom_parameters {
 no_public_ip = true
 }
}
3. Folder Organization
3.1 Standard Folder Structure
Workspace Root/
├── Shared/
│ ├── Libraries/
│ │ ├── common_utils/
│ │ └── data_quality/
│ ├── Templates/
│ │ ├── notebook_template.py
│ │ └── pipeline_template.py
│ └── Documentation/
│
├── Projects/
│ ├── sales_pipeline/
│ │ ├── bronze/
│ │ ├── silver/
│ │ ├── gold/
│ │ └── tests/
│ ├── customer_360/
│ └── ml_recommendations/
│
├── Users/
│ ├── user1@company.com/
│ │ ├── sandbox/
│ │ └── experiments/
│ └── user2@company.com/
│
├── Teams/
│ ├── data_engineering/
│ ├── data_science/
│ └── analytics/
│
└── Admin/
 ├── cluster_policies/
 ├── jobs/
 └── monitoring/
3.2 Permission Model
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.workspace import AclPermission

w = WorkspaceClient()

Define folder permissions
folder_permissions = {
 "/Shared": [
 {"group": "all_users", "permission": AclPermission.CAN_READ},
 {"group": "data_engineers", "permission": AclPermission.CAN_MANAGE}
],
 "/Projects": [
 {"group": "data_engineers", "permission": AclPermission.CAN_MANAGE},
 {"group": "data_scientists", "permission": AclPermission.CAN_EDIT}
],
 "/Users": [
 {"group": "all_users", "permission": AclPermission.CAN_READ}
],
 "/Admin": [
 {"group": "workspace_admins", "permission": AclPermission.CAN_MANAGE}
]
}

Apply permissions
for folder_path, permissions in folder_permissions.items():
 for perm in permissions:
 w.workspace.set_permissions(
 path=folder_path,
 access_control_list=[{
 "group_name": perm["group"],
 "permission_level": perm["permission"]
 }]
)
3.3 Repos Integration
.databricks/project.yml
name: sales_pipeline
profile: production

sync:
 include:
 - "src/**/*.py"
 - "notebooks/**/*.py"
 - "tests/**/*.py"
 exclude:
 - "**/__pycache__"
 - ".git"
 - "*.pyc"

environments:
 development:
 workspace_path: /Repos/development/sales_pipeline
 cluster_id: ${DEV_CLUSTER_ID}

 production:
 workspace_path: /Repos/production/sales_pipeline
 cluster_id: ${PROD_CLUSTER_ID}
Repos-Based Development Workflow
┌───┐
│ DEVELOPMENT WORKFLOW │
└───┘

 Git Repository Databricks Workspace
 ┌─────────────┐ ┌─────────────────────┐
 │ main │────────────│ /Repos/prod/ │
 │ branch │ │ (read-only) │
 └──────┬──────┘ └─────────────────────┘
 │
 ┌──────┴──────┐ ┌─────────────────────┐
 │ feature │────────────│ /Repos/dev/ │
 │ branch │ │ (editable) │
 └──────┬──────┘ └─────────────────────┘
 │
 │ Pull Request
 │
 ┌──────▼──────┐ ┌─────────────────────┐
 │ CI/CD │────────────│ /Repos/staging/ │
 │ Pipeline │ │ (testing) │
 └─────────────┘ └─────────────────────┘
4. Cluster Management
4.1 Cluster Types and Use Cases
	Cluster Type
	Use Case
	Configuration

	All-Purpose
	Interactive development
	Auto-terminate, shared

	Job
	Production pipelines
	Ephemeral, job-specific

	SQL Warehouse
	BI and SQL analytics
	Serverless preferred

	Pool
	Fast startup
	Pre-warmed instances

4.2 Cluster Policies
Standard Development Policy
{
 "cluster_type": {
 "type": "fixed",
 "value": "all-purpose"
 },
 "autotermination_minutes": {
 "type": "range",
 "minValue": 10,
 "maxValue": 120,
 "defaultValue": 60
 },
 "spark_version": {
 "type": "regex",
 "pattern": "13\\.[0-9]+\\.x-scala2\\.12"
 },
 "node_type_id": {
 "type": "allowlist",
 "values": [
 "Standard_DS3_v2",
 "Standard_DS4_v2",
 "Standard_DS5_v2"
],
 "defaultValue": "Standard_DS3_v2"
 },
 "num_workers": {
 "type": "range",
 "minValue": 1,
 "maxValue": 8,
 "defaultValue": 2
 },
 "custom_tags.Team": {
 "type": "fixed",
 "value": "data_engineering"
 },
 "custom_tags.CostCenter": {
 "type": "fixed",
 "value": "DE-001"
 }
}
Production Job Policy
{
 "cluster_type": {
 "type": "fixed",
 "value": "job"
 },
 "spark_version": {
 "type": "fixed",
 "value": "13.3.x-scala2.12"
 },
 "node_type_id": {
 "type": "allowlist",
 "values": [
 "Standard_E8s_v3",
 "Standard_E16s_v3"
]
 },
 "driver_node_type_id": {
 "type": "fixed",
 "value": "Standard_E8s_v3"
 },
 "autoscale.min_workers": {
 "type": "range",
 "minValue": 2,
 "maxValue": 4,
 "defaultValue": 2
 },
 "autoscale.max_workers": {
 "type": "range",
 "minValue": 4,
 "maxValue": 32,
 "defaultValue": 16
 },
 "azure_attributes.first_on_demand": {
 "type": "fixed",
 "value": 1
 },
 "azure_attributes.availability": {
 "type": "fixed",
 "value": "SPOT_WITH_FALLBACK_AZURE"
 },
 "init_scripts.0.workspace.destination": {
 "type": "regex",
 "pattern": "/Shared/init-scripts/.*"
 }
}
4.3 Instance Pools
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Create pool for fast cluster startup
pool = w.instance_pools.create(
 instance_pool_name="data-engineering-pool",
 node_type_id="Standard_DS4_v2",
 min_idle_instances=2,
 max_capacity=20,
 idle_instance_autotermination_minutes=15,
 preloaded_spark_versions=["13.3.x-scala2.12"],
 custom_tags={
 "Team": "data_engineering",
 "Environment": "development"
 },
 azure_attributes={
 "availability": "SPOT_WITH_FALLBACK_AZURE",
 "spot_bid_max_price": -1
 }
)

Use pool in cluster configuration
cluster_config = {
 "cluster_name": "dev-cluster",
 "spark_version": "13.3.x-scala2.12",
 "instance_pool_id": pool.instance_pool_id,
 "num_workers": 4,
 "autotermination_minutes": 60
}
4.4 Cluster Monitoring
-- Monitor cluster utilization
SELECT
 cluster_id,
 cluster_name,
 DATE_TRUNC('hour', timestamp) as hour,
 AVG(cpu_utilization) as avg_cpu,
 AVG(memory_utilization) as avg_memory,
 MAX(num_active_tasks) as max_tasks
FROM system.compute.cluster_metrics
WHERE timestamp >= current_date() - INTERVAL 7 DAYS
GROUP BY cluster_id, cluster_name, DATE_TRUNC('hour', timestamp)
ORDER BY hour DESC;

-- Identify underutilized clusters
SELECT
 cluster_id,
 cluster_name,
 AVG(cpu_utilization) as avg_cpu,
 SUM(CASE WHEN cpu_utilization < 20 THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as idle_pct
FROM system.compute.cluster_metrics
WHERE timestamp >= current_date() - INTERVAL 7 DAYS
GROUP BY cluster_id, cluster_name
HAVING idle_pct > 50
ORDER BY idle_pct DESC;
5. Job and Workflow Design
5.1 Job Organization
Jobs/
├── data_engineering/
│ ├── ingestion/
│ │ ├── daily_customer_ingestion
│ │ ├── hourly_event_ingestion
│ │ └── weekly_product_sync
│ ├── transformation/
│ │ ├── silver_customer_processing
│ │ └── silver_event_processing
│ └── aggregation/
│ ├── daily_sales_summary
│ └── weekly_kpi_calculation
│
├── data_science/
│ ├── training/
│ │ ├── weekly_model_training
│ │ └── daily_feature_update
│ └── inference/
│ ├── batch_predictions
│ └── feature_refresh
│
└── analytics/
 ├── reports/
 │ ├── daily_executive_dashboard
 │ └── weekly_sales_report
 └── data_quality/
 └── daily_quality_checks
5.2 Job Configuration Patterns
Simple Pipeline Job
databricks.yml
resources:
 jobs:
 daily_etl:
 name: "[PROD] Daily ETL Pipeline"
 schedule:
 quartz_cron_expression: "0 0 6 * * ?"
 timezone_id: "America/New_York"

 email_notifications:
 on_failure:
 - data-engineering@company.com

 tasks:
 - task_key: bronze_ingestion
 notebook_task:
 notebook_path: /Repos/production/etl/notebooks/bronze_ingestion
 new_cluster:
 spark_version: "13.3.x-scala2.12"
 node_type_id: "Standard_DS4_v2"
 num_workers: 4
 policy_id: ${PROD_POLICY_ID}

 - task_key: silver_transformation
 depends_on:
 - task_key: bronze_ingestion
 notebook_task:
 notebook_path: /Repos/production/etl/notebooks/silver_transformation
 new_cluster:
 spark_version: "13.3.x-scala2.12"
 node_type_id: "Standard_E8s_v3"
 num_workers: 8
 policy_id: ${PROD_POLICY_ID}

 - task_key: gold_aggregation
 depends_on:
 - task_key: silver_transformation
 notebook_task:
 notebook_path: /Repos/production/etl/notebooks/gold_aggregation
 new_cluster:
 spark_version: "13.3.x-scala2.12"
 node_type_id: "Standard_DS4_v2"
 num_workers: 4
 policy_id: ${PROD_POLICY_ID}
Complex DAG with Parallelism
tasks:
 # Parallel ingestion tasks
 - task_key: ingest_orders
 notebook_task:
 notebook_path: /etl/ingest_orders

 - task_key: ingest_customers
 notebook_task:
 notebook_path: /etl/ingest_customers

 - task_key: ingest_products
 notebook_task:
 notebook_path: /etl/ingest_products

 # Transformation depends on all ingestion
 - task_key: transform_sales
 depends_on:
 - task_key: ingest_orders
 - task_key: ingest_customers
 - task_key: ingest_products
 notebook_task:
 notebook_path: /etl/transform_sales

 # Parallel aggregation
 - task_key: aggregate_daily
 depends_on:
 - task_key: transform_sales
 notebook_task:
 notebook_path: /etl/aggregate_daily

 - task_key: aggregate_weekly
 depends_on:
 - task_key: transform_sales
 notebook_task:
 notebook_path: /etl/aggregate_weekly

 # Final consolidation
 - task_key: consolidate_reports
 depends_on:
 - task_key: aggregate_daily
 - task_key: aggregate_weekly
 notebook_task:
 notebook_path: /etl/consolidate_reports
5.3 Delta Live Tables Pipelines
DLT Pipeline Definition
import dlt
from pyspark.sql.functions import col, current_timestamp

Bronze Layer
@dlt.table(
 name="bronze_orders",
 comment="Raw orders from source system",
 table_properties={
 "quality": "bronze",
 "pipelines.autoOptimize.managed": "true"
 }
)
def bronze_orders():
 return (
 spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.schemaLocation", "/schema/orders")
 .load("/landing/orders/")
 .withColumn("_ingestion_time", current_timestamp())
)

Silver Layer with quality expectations
@dlt.table(
 name="silver_orders",
 comment="Cleaned and validated orders"
)
@dlt.expect_or_drop("valid_order_id", "order_id IS NOT NULL")
@dlt.expect_or_drop("positive_amount", "amount > 0")
@dlt.expect("valid_date", "order_date <= current_date()")
def silver_orders():
 return (
 dlt.read_stream("bronze_orders")
 .filter(col("status") != "cancelled")
 .dropDuplicates(["order_id"])
)

Gold Layer aggregation
@dlt.table(
 name="gold_daily_sales",
 comment="Daily sales aggregates"
)
def gold_daily_sales():
 return (
 dlt.read("silver_orders")
 .groupBy("order_date", "region")
 .agg(
 sum("amount").alias("total_sales"),
 count("order_id").alias("order_count")
)
)
6. CI/CD Integration
6.1 Deployment Architecture
┌───┐
│ CI/CD PIPELINE │
└───┘

 Developer CI System Databricks
 ┌────────┐ ┌────────┐ ┌────────────┐
 │ Git │───────►│ Build │───────────►│ Dev │
 │ Push │ │ Test │ │ Workspace │
 └────────┘ └───┬────┘ └────────────┘
 │
 │ PR Merge
 ▼
 ┌────────┐ ┌────────────┐
 │ Deploy │───────────►│ Staging │
 │ QA │ │ Workspace │
 └───┬────┘ └────────────┘
 │
 │ Approval
 ▼
 ┌────────┐ ┌────────────┐
 │ Deploy │───────────►│ Production │
 │ Prod │ │ Workspace │
 └────────┘ └────────────┘
6.2 GitHub Actions Workflow
name: Databricks CI/CD

on:
 push:
 branches: [main, develop]
 pull_request:
 branches: [main]

env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}

jobs:
 validate:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3

 - name: Setup Python
 uses: actions/setup-python@v4
 with:
 python-version: '3.10'

 - name: Install dependencies
 run: |
 pip install databricks-cli pytest
 pip install -r requirements.txt

 - name: Lint code
 run: |
 pip install flake8
 flake8 src/ --max-line-length=120

 - name: Run unit tests
 run: pytest tests/unit/

 - name: Setup Databricks CLI
 uses: databricks/setup-cli@main

 - name: Validate bundle
 run: databricks bundle validate

 deploy-staging:
 needs: validate
 if: github.ref == 'refs/heads/develop'
 runs-on: ubuntu-latest
 environment: staging
 steps:
 - uses: actions/checkout@v3

 - name: Setup Databricks CLI
 uses: databricks/setup-cli@main

 - name: Deploy to staging
 run: databricks bundle deploy -t staging
 env:
 DATABRICKS_HOST: ${{ secrets.STAGING_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.STAGING_TOKEN }}

 - name: Run integration tests
 run: databricks bundle run integration_tests -t staging

 deploy-production:
 needs: validate
 if: github.ref == 'refs/heads/main'
 runs-on: ubuntu-latest
 environment: production
 steps:
 - uses: actions/checkout@v3

 - name: Setup Databricks CLI
 uses: databricks/setup-cli@main

 - name: Deploy to production
 run: databricks bundle deploy -t production
 env:
 DATABRICKS_HOST: ${{ secrets.PROD_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.PROD_TOKEN }}
6.3 Databricks Asset Bundles
databricks.yml
bundle:
 name: sales_pipeline

variables:
 catalog:
 description: Target catalog
 default: development

 warehouse_id:
 description: SQL warehouse for queries

workspace:
 host: ${DATABRICKS_HOST}

artifacts:
 wheel:
 type: whl
 path: ./dist/*.whl

resources:
 jobs:
 sales_etl:
 name: "[${bundle.target}] Sales ETL"
 schedule:
 quartz_cron_expression: "0 0 6 * * ?"
 timezone_id: America/New_York
 tasks:
 - task_key: etl
 notebook_task:
 notebook_path: ./notebooks/sales_etl
 base_parameters:
 catalog: ${var.catalog}
 libraries:
 - whl: ./dist/*.whl

 pipelines:
 sales_dlt:
 name: "[${bundle.target}] Sales DLT"
 target: "${var.catalog}.sales"
 libraries:
 - notebook:
 path: ./pipelines/sales_pipeline

targets:
 development:
 default: true
 variables:
 catalog: development
 workspace:
 host: https://dev.azuredatabricks.net

 staging:
 variables:
 catalog: staging
 workspace:
 host: https://staging.azuredatabricks.net

 production:
 variables:
 catalog: production
 workspace:
 host: https://prod.azuredatabricks.net
 run_as:
 service_principal_name: production-etl-sp
7. Cost Management
7.1 Cost Attribution Model
-- Cost by team using tags
SELECT
 custom_tags['Team'] as team,
 sku_name,
 SUM(usage_quantity) as total_dbus,
 SUM(usage_quantity * list_price) as estimated_cost
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 30 DAYS
AND custom_tags['Team'] IS NOT NULL
GROUP BY 1, 2
ORDER BY estimated_cost DESC;

-- Cost by job
SELECT
 custom_tags['JobName'] as job_name,
 custom_tags['Team'] as team,
 SUM(usage_quantity) as total_dbus,
 SUM(usage_quantity * list_price) as estimated_cost
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 30 DAYS
AND custom_tags['JobName'] IS NOT NULL
GROUP BY 1, 2
ORDER BY estimated_cost DESC;

-- Daily cost trend
SELECT
 usage_date,
 workspace_id,
 SUM(usage_quantity * list_price) as daily_cost
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 30 DAYS
GROUP BY usage_date, workspace_id
ORDER BY usage_date;
7.2 Budget Alerts
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Create budget alert
budget = w.budgets.create(
 budget={
 "budget_configuration": {
 "display_name": "Monthly Data Engineering Budget",
 "filter": {
 "tags": [{"key": "Team", "value": {"values": ["data_engineering"]}}]
 },
 "alert_configurations": [
 {
 "time_period": "MONTH",
 "trigger_type": "CUMULATIVE_SPENDING_EXCEEDED",
 "quantity_type": "LIST_PRICE_DOLLARS_USD",
 "quantity_threshold": "10000",
 "action_configurations": [
 {
 "action_type": "EMAIL_NOTIFICATION",
 "target": "data-engineering-leads@company.com"
 }
]
 }
]
 }
 }
)
7.3 Cost Optimization Recommendations
	Strategy
	Implementation
	Expected Savings

	Job Clusters
	Use job clusters for production
	40-60%

	Spot Instances
	Enable for non-critical workloads
	60-90%

	Auto-termination
	Set aggressive timeouts for dev
	20-40%

	Right-sizing
	Monitor and adjust cluster sizes
	10-30%

	Serverless SQL
	Use for variable BI workloads
	Variable

	Instance Pools
	Reduce startup time overhead
	5-15%

8. Security Patterns
8.1 Workspace Security Architecture
┌───┐
│ SECURITY ARCHITECTURE │
├───┤
│ │
│ Identity Layer │
│ ┌───┐ │
│ │ Azure AD / Okta / SCIM → Groups → Workspace Access │ │
│ └───┘ │
│ │
│ Network Layer │
│ ┌───┐ │
│ │ Private Link │ IP Access Lists │ VNet Injection │ │
│ └───┘ │
│ │
│ Data Layer │
│ ┌───┐ │
│ │ Unity Catalog │ Row/Column Security │ Data Masking │ │
│ └───┘ │
│ │
│ Compute Layer │
│ ┌───┐ │
│ │ Cluster Policies │ Init Scripts │ Secrets │ │
│ └───┘ │
│ │
└───┘
8.2 Secret Management
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Create secret scope
w.secrets.create_scope(
 scope="production-secrets",
 scope_backend_type="DATABRICKS"
)

Store secrets
w.secrets.put_secret(
 scope="production-secrets",
 key="database-password",
 string_value="<password>"
)

Grant access to secret scope
w.secrets.put_acl(
 scope="production-secrets",
 principal="data_engineers",
 permission="READ"
)
Using Secrets in Notebooks
Access secret in notebook
db_password = dbutils.secrets.get(
 scope="production-secrets",
 key="database-password"
)

Use in JDBC connection
jdbc_url = f"jdbc:postgresql://host:5432/db?user=app&password={db_password}"
9. Monitoring and Observability
9.1 Workspace Monitoring Dashboard
-- Workspace health metrics
CREATE OR REPLACE VIEW admin.workspace_health AS

-- Active users
SELECT 'Active Users (7d)' as metric,
 COUNT(DISTINCT user_identity.email) as value
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 7 DAYS

UNION ALL

-- Failed jobs
SELECT 'Failed Jobs (24h)' as metric,
 COUNT(*) as value
FROM system.workflow.job_run_timeline
WHERE start_time >= current_timestamp() - INTERVAL 24 HOURS
AND result_state = 'FAILED'

UNION ALL

-- Active clusters
SELECT 'Active Clusters' as metric,
 COUNT(*) as value
FROM system.compute.clusters
WHERE state = 'RUNNING'

UNION ALL

-- DBU consumption (7d)
SELECT 'DBUs Consumed (7d)' as metric,
 ROUND(SUM(usage_quantity), 2) as value
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 7 DAYS;
9.2 Alert Configuration
Configure job failure alerts
def configure_job_monitoring(job_id, alert_emails):
 w = WorkspaceClient()

 w.jobs.update(
 job_id=job_id,
 new_settings={
 "email_notifications": {
 "on_failure": alert_emails,
 "on_start": [],
 "on_success": [],
 "no_alert_for_skipped_runs": True
 },
 "webhook_notifications": {
 "on_failure": [
 {"id": "slack_webhook_id"}
]
 },
 "notification_settings": {
 "no_alert_for_skipped_runs": True,
 "no_alert_for_canceled_runs": True
 }
 }
)
10. Implementation Checklist
10.1 Planning Phase
	Task
	Owner
	Status

	Define workspace topology
	Architect
	

	Design folder structure
	Platform Team
	

	Define cluster policies
	Platform Team
	

	Plan CI/CD integration
	DevOps
	

	Design cost attribution
	Finance/Platform
	

10.2 Implementation Phase
	Task
	Owner
	Status

	Create workspaces
	Platform Team
	

	Configure Unity Catalog
	Platform Team
	

	Set up folder structure
	Platform Team
	

	Create cluster policies
	Platform Team
	

	Configure secret scopes
	Security
	

	Set up CI/CD pipelines
	DevOps
	

	Configure monitoring
	Platform Team
	

10.3 Operations Phase
	Task
	Owner
	Status

	Train users
	Platform Team
	

	Document procedures
	Platform Team
	

	Set up cost alerts
	Finance
	

	Configure backup/DR
	Platform Team
	

	Establish review cadence
	Platform Team
	

Document Version: 1.0
Last Updated: January 2026
Author: Mastech Digital - Data Engineering Practice
image1.png
#MAST=CH
DIGITAL

